If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+20t+5=10
We move all terms to the left:
16t^2+20t+5-(10)=0
We add all the numbers together, and all the variables
16t^2+20t-5=0
a = 16; b = 20; c = -5;
Δ = b2-4ac
Δ = 202-4·16·(-5)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{5}}{2*16}=\frac{-20-12\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{5}}{2*16}=\frac{-20+12\sqrt{5}}{32} $
| 7x-21=14x-70 | | -3y=9=6y-36 | | r2–7r–8=0 | | 11x=6x-75 | | 3n-13=4n-15 | | 2y+10=8 | | -38-7y=2-7(y+) | | 6(6+3)+2y=26 | | -38-7y=2-7(y-6) | | 1/2x+3/4=1/2 | | y+82=121 | | 24−2n=14 | | 3/4÷w=12 | | 2n-13/5-n-3/11=1+n-9/5 | | X+x1+x2=423 | | -5(v+5)=5v+15 | | 18^2+15x+5=0 | | -9(x-1)=8x+26 | | 4w=18+1w | | 5y=20y | | 15z=6z+27 | | 6x+1=5+7x | | -5(-3w+5)-2w=3(w-1)-8 | | 7x=822 | | 4x+3=11-2x | | -14=5(x-7)-8x | | 3n-15=n-7 | | 3z+147=180 | | -5(-3w+5)-2w=3(w-1) | | U-8+2(2u+9)=-5(u+1) | | n-1=-13-3n | | 2y-5=147 |